Refine your search:     
Report No.
 - 
Search Results: Records 1-11 displayed on this page of 11
  • 1

Presentation/Publication Type

Initialising ...

Refine

Journal/Book Title

Initialising ...

Meeting title

Initialising ...

First Author

Initialising ...

Keyword

Initialising ...

Language

Initialising ...

Publication Year

Initialising ...

Held year of conference

Initialising ...

Save select records

Journal Articles

Laser-driven neutron generation realizing single-shot resonance spectroscopy

Yogo, Akifumi*; Lan, Z.*; Arikawa, Yasunobu*; Abe, Yuki*; Mirfayzi, S. R.*; Wei, T.*; Mori, Takato*; Golovin, D.*; Hayakawa, Takehito*; Iwata, Natsumi*; et al.

Physical Review X, 13(1), p.011011_1 - 011011_12, 2023/01

 Times Cited Count:3 Percentile:88.42(Physics, Multidisciplinary)

Journal Articles

Toward mechanistic evaluation of critical heat flux in nuclear reactors, 2; Recent studies and future challenges toward mechanistic and reliable CHF evaluation

Okawa, Tomio*; Mori, Shoji*; Liu, W.*; Ose, Yasuo*; Yoshida, Hiroyuki; Ono, Ayako

Nihon Genshiryoku Gakkai-Shi ATOMO$$Sigma$$, 63(12), p.820 - 824, 2021/12

The evaluation method of the critical heat flux based on the mechanism is needed for the efficient design and development of fuel in reactors and the appropriate safety evaluation. In this paper, the current researches relating to the mechanism of the critical heat flux are reviewed, and the issue to be considered in the future are discussed.

Journal Articles

Demonstration of a neutron resonance transmission analysis system using a laser-driven neutron source

Hironaka, Kota; Ito, Fumiaki*; Lee, J.; Koizumi, Mitsuo; Takahashi, Tone; Suzuki, Satoshi*; Yogo, Akifumi*; Arikawa, Yasunobu*; Abe, Yuki*

Dai-42-Kai Nihon Kaku Busshitsu Kanri Gakkai Nenji Taikai Kaigi Rombunshu (Internet), 4 Pages, 2021/11

Neutron resonance transmission analysis (NRTA) is a method for non-destructive measurement of nuclear material by using a time-of-flight (TOF) technique with a pulsed neutron source. For NRTA system to carry out the short-distance TOF measurements with high resolutions, a short-pulsed neutron source is required. Laser-driven neutron sources (LDNSs) is very suitable as such a neutron source because of its short pulse width. Moreover, the compactness of the laser system is also expected due to the remarkable development of laser technology in recent years. In the present study, we have developed a technology for applying LDNS to the NRTA system and conducted the demonstration experiment using the LFEX laser at Osaka University to investigate the feasibility of the system. In this experiment, we successfully observed the neutron resonance peaks of indium and silver samples.

Journal Articles

Development of a neutron sintillator for a compact NRTA system

Ito, Fumiaki*; Lee, J.; Hironaka, Kota; Takahashi, Tone; Suzuki, Satoshi*; Hori, Junichi*; Terada, Kazushi*; Koizumi, Mitsuo

KURNS Progress Report 2020, P. 98, 2021/08

A compact Nuclear Resonance Transmission Analysis (NRTA) system using a Laser Driven Neutron Source (LDNS) has been developed as a part of the development of nuclear non-proliferation technology supported by the MEXT. In NRTA, the neutron energy emitted from a pulsed neutron source is measured using the time-of-flight (TOF) method. LDNS is of interest because of its short pulse width, which is necessary for accurate TOF measurements over short flight distances. In the short-distance TOF measurement, there will be a large gamma-ray background event due to the coincidence of the timing of the arrival of 2.2 MeV gamma-rays due to neutron capture on hydrogen in the moderator and the timing of the arrival of neutrons around the resonance energy. Since the LDNS is still under development, the neutron flux is not sufficient and it is desirable to use a detector with high detection efficiency. For these reasons, we have developed a detector with low efficiency to gamma-rays and high efficiency to neutrons (multilayer neutron detector). As one of the results of this year's experiments, we confirmed that the multilayer neutron detector have low sensitivity to gamma-rays.

Journal Articles

A Simulation on homogeneous isotropic turbulent flows on the earth simulator

Yokokawa, Mitsuo; Saito, Minoru*; Ishihara, Takashi*; Kaneda, Yukio*

Hai Pafomansu Komputingu To Keisan Kagaku Shimpojium (HPCS2002) Rombunshu, p.125 - 131, 2002/01

With the advent of supercomputers, large-scale direct numerical simulations(DNS) of the Navier-Stokes equations are possible to carry out. However, larger scale DNS is required to make turbulence clear and to make a parameterization of turbulence. The Earth Simulator is a distributed memory parallel supercomputer whose peak speed is 40 Tflop/s and it is very useful to make a very large-scale DNS. Simulation codes named ${tt Trans7}$ have been developed for the Earth Simulator and their correctness have been validated by compareing the simulation results by ${tt Trans7}$ with ones by a conventinal code. The sustatined performance of 3.72Gflop/s is obtained in the execution of the serial version with the problem size of $$256^3$$ on an arithmetic processor(AP) of the Earth Simulator. Speedup of about 7 is achieved in 8APs by the parallelized code. Sppedup is degraded by the execution of 8 processor nodes, however, efficiency of 25% against the peak performance is obtained for the problem size of $$512^3$$.

JAEA Reports

Vectorization, parallelization and porting of nuclear codes on the VPP500 system (parallelization); Progress report fiscal 1997

*; *; *; *; *; *; Ogasawara, Shinobu*; Adachi, Masaaki*; Kume, Etsuo

JAERI-Data/Code 99-020, 168 Pages, 1999/03

JAERI-Data-Code-99-020.pdf:5.34MB

no abstracts in English

JAEA Reports

Vectorization, parallelization and porting of nuclear codes on the VPP500 system (parallelization;Progress report fiscal 1996

*; *; *; *; *; *; Harada, Hiro; ; Kume, Etsuo;

JAERI-Data/Code 97-052, 160 Pages, 1997/12

JAERI-Data-Code-97-052.pdf:4.17MB

no abstracts in English

Oral presentation

Developments of neutron resonance transmission analysis using a laser driven neutron source, 3; Transmission measurements of In and Ag by a Time-of-Flight method using the LFEX laser

Ito, Fumiaki*; Lee, J.; Takahashi, Tone; Koizumi, Mitsuo; Suzuki, Satoshi*; Hironaka, Kota; Yogo, Akifumi*; Arikawa, Yasunobu*; Abe, Yuki*

no journal, , 

We have been developing Nuclear Resonance Transmission Analysis (NRTA) using Laser Driven Neutron Source (LDNS) as a part of nuclear non-proliferation technology development supported by the MEXT (Ministry of Education, Culture, Sports, Science and Technology) subsidy program "promotion of strengthening nuclear security and the like". An LDNS, which can generate short pulsed neutrons from a small volume, is considered to potentially have large benefits for the NRTA. In order to demonstrate the NRTA using the LDNS, the transmission measurements have been carried out by the TOF method using the LFEX laser at Osaka University. The results are reported here.

Oral presentation

Development of a measurement system applicable to the technique of neutron resonance transmission analysis using a laser-driven neutron source

Koizumi, Mitsuo; Ito, Fumiaki*; Lee, J.; Takahashi, Tone; Suzuki, Satoshi*; Hironaka, Kota; Yogo, Akifumi*; Arikawa, Yasunobu*; Abe, Yuki*

no journal, , 

no abstracts in English

Oral presentation

Development of a neutron resonance transmission analysis system using a laser driven neutron source

Hironaka, Kota; Lee, J.; Ito, Fumiaki*; Koizumi, Mitsuo; Takahashi, Tone; Suzuki, Satoshi*; Yogo, Akifumi*; Arikawa, Yasunobu*; Abe, Yuki*

no journal, , 

Neutron resonance transmission analysis (NRTA) is a method for non-destructive measurement of nuclear material by using a time-of-flight (TOF) technique with a pulsed neutron source. For NRTA system to carry out the short-distance TOF measurements with high resolutions, a short-pulsed neutron source is required. Laser-driven neutron sources (LDNSs) is very suitable as such a neutron source because of its short pulse width. Moreover, the compactness of the laser system is also expected due to the remarkable development of laser technology in recent years. In the present study, we have developed a technology for applying LDNS to the NRTA system and conducted the demonstration experiment using the LFEX laser at Osaka University to investigate the feasibility of the system. In this experiment, we successfully observed the neutron resonance peaks of indium and silver samples.

Oral presentation

Demonstration of a neutron resonance transmission analysis system using a laser-driven neutron source

Hironaka, Kota; Lee, J.; Ito, Fumiaki*; Takahashi, Tone; Suzuki, Satoshi*; Yogo, Akifumi*; Arikawa, Yasunobu*; Abe, Yuki*; Koizumi, Mitsuo

no journal, , 

Neutron resonance transmission analysis (NRTA) is a method for non-destructive measurement of nuclear material by using a time-of-flight (TOF) technique with a pulsed neutron source. For NRTA system to carry out the short-distance TOF measurements with high resolutions, a short-pulsed neutron source is required. Laser-driven neutron sources (LDNSs) is very suitable as such a neutron source because of its short pulse width. Moreover, the compactness of the laser system is also expected due to the remarkable development of laser technology in recent years. In the present study, we have developed a technology for applying LDNS to the NRTA system and conducted the demonstration experiment using the LFEX laser at Osaka University to investigate the feasibility of the system. In this experiment, we successfully observed the neutron resonance peaks of indium and silver samples.

11 (Records 1-11 displayed on this page)
  • 1